UV-Vis spectroscopic and colorimetric anion detection and fluorescence properties of new 3-amino-4-hydroxybenzenesulfonic acid-based Schiff bases depending on the strength and position of the electron donor substitution


YILDIZ E., PEPE Y., Erdener D., KARATAY A., BOYACIOĞLU B., ÜNVER H., ...Daha Fazla

Physica Scripta, cilt.98, sa.8, 2023 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 98 Sayı: 8
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1088/1402-4896/ace806
  • Dergi Adı: Physica Scripta
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aerospace Database, Chemical Abstracts Core, Compendex, INSPEC, zbMATH
  • Anahtar Kelimeler: 3-amino-4-hydroxybenzenesulfonic acid, anion sensor, biological activity, density functional theory (DFT), DPPH method, femtosecond transient absorption spectroscopy
  • Çanakkale Onsekiz Mart Üniversitesi Adresli: Evet

Özet

In this study, 3-amino-4-hydroxybenzenesulfonic acid-based imine compounds; 3-(2,5-dihydroxybenzylideneamino)-4-hydroxybenzenesulfonic acid (1), 3-(2,4-dihydroxybenzylideneamino)-4-hydroxybenzenesulfonic acid (2) and 4-hydroxy-3-(2-hydroxy-3-methoxybenzylideneamino)-4-hydroxybenzenesulfonic acid (3) was synthesized. The compounds were analyzed using various spectroscopy methods, and the experimental UV-vis data matched the theoretical predictions. The compound 1 displayed lower stability, higher reactivity, and easier photoexcitation due to a smaller HOMO-LUMO energy gap. The investigated compounds 1-3 showed promise as chemosensors for anions, providing visible detection in daylight conditions. The compound 3 exhibited selective fluorescence at specific wavelengths. The compounds 1-3 interacted with DNA through electrostatic interactions. Also, compounds 1-3 showed higher antioxidant activity than BHT. However, fluorescence measurements indicated that the emission signals were strongly influenced by the position and strength of the electron-donating group. Adding a hydroxy or methoxy moiety near the -OH group on the phenyl ring decreased the fluorescence signal due to intersystem crossing and intramolecular charge transfer mechanisms, respectively. These findings were supported by femtosecond transient absorption spectroscopy measurements. The results emphasize the significance of substituents in imines derived from 3-amino-4-hydroxybenzenesulfonic acid in determining their biological activities, as well as their optical and sensor properties.